## The Pythagorean Theorem

## Pythagoras

- Lived in southern Italy during the sixth century B.C.
- Considered the first true mathematician
- Used mathematics as a means to understand the natural world
- First to teach that the earth was a sphere that revolves around the sun



## Right Triangles

- Longest side is the hypotenuse, side c (opposite the $90^{\circ}$ angle)
- The other two sides are the legs, sides a and b
- Pythagoras developed a formula for finding the length of the sides of any right triangle



## The Pythagorean Theorem

"For any right triangle, the sum of the areas of the two small squares is equal to the area of the larger."

$$
a^{2}+b^{2}=c^{2}
$$



## Proof



Solve for x .

$$
a^{2}+b^{2}=c^{2}
$$



$$
\begin{aligned}
6^{2}+8^{2} & =x^{2} \\
36+64 & =x^{2} \\
100 & =x^{2} \\
\sqrt{100} & =\sqrt{x^{2}}
\end{aligned}
$$

Solve for y .

$$
\begin{aligned}
\mathrm{a}^{2}+\mathrm{b}^{2} & =\mathrm{c}^{2} \\
7^{2}+4^{2} & =\mathrm{y}^{2} \\
49+16 & =\mathrm{y}^{2} \\
65 & =\mathrm{y}^{2} \\
\sqrt{65} & =\sqrt{\mathrm{y}^{2}} \\
\mathrm{y} & \approx 8.1
\end{aligned}
$$

Solve for t .


$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& \mathrm{t}^{2}+6^{2}=15^{2} \\
& \mathrm{t}^{2}+36=225 \\
&-36-36 \\
& \hline \mathrm{t}^{2}=189 \\
& \sqrt{t^{2}}=\sqrt{189} \\
& t=\sqrt{189} \\
& t \approx 13.7
\end{aligned}
$$

To the nearest tenth of a foot, find the length of the diagonal of a rectangle with a width of 4 feet and a length of 10 feet.


A car drives 20 miles due east and then 45 miles due south. To the nearest hundredth of a mile, how far is the car from its starting point?


$$
\begin{aligned}
& \mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{c}^{2} \\
& 20^{2}+45^{2}=\mathrm{x}^{2} \\
& 400+2025=\mathrm{x}^{2} \\
& 2425=\mathrm{x}^{2} \\
& \sqrt{2425}=\sqrt{\mathrm{x}^{2}} \\
& \mathrm{x}=\sqrt{2425} \\
& x \approx 49.24
\end{aligned}
$$

## Applications

- The Pythagorean theorem has far-reaching ramifications in other fields (such as the arts), as well as practical applications.
- The theorem is invaluable when computing distances between two points, such as in navigation and land surveying.
- Another important application is in the design of ramps. Ramp designs for handicap-accessible sites and for skateboard parks are very much in demand.


## Baseball Problem

A baseball "diamond" is really a square.

You can use the Pythagorean theorem to find distances around a baseball diamond.

## Baseball Problem

The distance between consecutive bases is 90 feet. How far does a catcher have to throw the ball from home plate to second base?


## Baseball Problem

To use the Pythagorean theorem to solve for x , find the right angle.
Which side is the hypotenuse?
Which sides are the legs? Now use: $\boldsymbol{a}^{\mathbf{2}}+\mathbf{b}^{\mathbf{2}}=\mathbf{c}^{\mathbf{2}}$


## Baseball Problem

## Solution

- The hypotenuse is the distance from home to second, or side $x$ in the picture.
- The legs are from home to first and from first to second.
- Solution:

$$
x^{2}=90^{2}+90^{2}=16,200
$$

 $x=127.28 \mathrm{ft}$

## Ladder Problem

A ladder leans against a second-story window of a house.
If the ladder is 25 meters long, and the base of the ladder is 7 meters from the house, how high is the window?


## Ladder Problem

## Solution

- First draw a diagram that shows the sides of the right triangle.
- Label the sides:
- Ladder is 25 m
- Distance from house is 7 m
- Use $a^{2}+b^{2}=c^{2}$ to solve for the missing side.


Distance from house: 7 meters

## Ladder Problem

## Solution

$$
\begin{aligned}
& 7^{2}+b^{2}=25^{2} \\
& 49+b^{2}=625 \\
& b^{2}=576 \\
& b=24 m
\end{aligned}
$$



## Sources

Great info on the Pythagorean theorem, Pythagoras, and other math-related topics:

- The Baseball Problem
- Pythagoras of Samos
- Pythagoras Playground
- Microsoft Encarta 2000

